Hadronic Matrix Elements & EDMs

M.J. Ramsey-Musolf
U Mass Amherst

Amherst Center for Fundamental Interactions

http://www.physics.umass.edu/acfi/

Lattice Meets Experiment Workshop BNL, December 2013

Outline

- I. Introduction: Motivation & Experimental Situation
- II. Interpreting EDMs
- III. EDMs in Strongly Interacting Systems
- IV. Hadronic Matrix Elements: The Challenge
- V. Implications & Outlook

I. Introduction

Why are EDMs Interesting?

- Does QCD violate CP?
- What is the BSM CPV needed for baryogenesis?
- What is the BSM mass scale?

EDM Experiments

PHYSICAL REVIEW

VOLUME 108, NUMBER 1

OCTOBER 1, 1957

Experimental Limit to the Electric Dipole Moment of the Neutron

J. H. SMITH,* E. M. PURCELL, AND N. F. RAMSEY

Oak Ridge National Laboratory, Oak Ridge, Tennessee, and Harvard University, Cambridge, Massachusetts

(Received May 17, 1957)

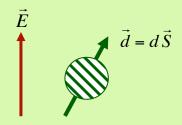
An experimental measurement of the electric dipole moment of the neutron by a neutron-beam magnetic resonance method is described. The result of the experiment is that the electric dipole moment of the neutron equals the charge of the electron multiplied by a distance $D = (-0.1 \pm 2.4) \times 10^{-20}$ cm. Consequently, if an electric dipole moment of the neutron exists and is associated with the spin angular momentum, its magnitude almost certainly corresponds to a value of D less than 5×10^{-20} cm.

EDM Experiments

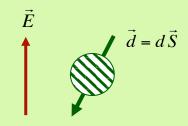
PHYSICAL REVIEW

VOLUME 108, NUMBER 1

OCTOBER 1, 1957

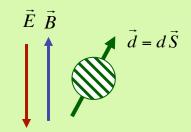

Experimental Limit to the Electric Dipole Moment of the Neutron

J. H. SMITH,* E. M. PURCELL, AND N. F. RAMSEY


Oak Ridge National Laboratory, Oak Ridge, Tennessee, and Harvard University, Cambridge, Massachusetts

(Received May 17, 1957)

An experimental measurement of the electric dipole moment of the neutron by a neutron-beam magnetic resonance method is described. The result of the experiment is that the electric dipole moment of the neutron equals the charge of the electron multiplied by a distance $D = (-0.1 \pm 2.4) \times 10^{-20}$ cm. Consequently, if an electric dipole moment of the neutron exists and is associated with the spin angular momentum, its magnitude almost certainly corresponds to a value of D less than 5×10^{-20} cm.



$$v_{EDM} = -\frac{d\vec{S} \cdot \vec{E}}{h}$$

$$v_{EDM} = -\frac{d(-\vec{S}) \cdot \vec{E}}{h}$$

T-odd → CPodd by CPT theorem

$$v_{EDM} = -\frac{dS \cdot (-E)}{h}$$

P-odd: used to find signal

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
d _e (ThO)	8.7 x 10 ⁻²⁹ **	10 -38	10 ⁻²⁹
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

^{* 95%} CL ** 90% CL, no eq CPV

(thanks: T. Chupp)

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
d _e (ThO)	8.7 x 10 ⁻²⁹ **	10 -38	10 ⁻²⁹
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

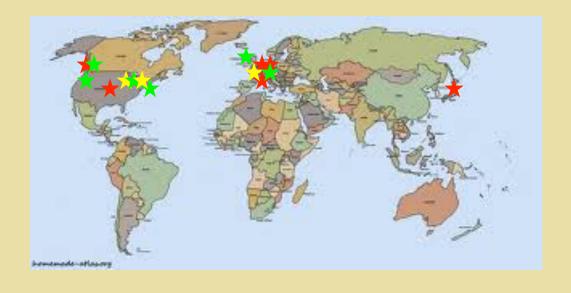
* 95% CL ** 90% CL, no eq CPV

(thanks: T. Chupp)

Mass Scale Sensitivity

$$\psi$$
 ϕ $\sin\phi_{CP} \sim 1 o M > 5000 \ {
m GeV}$ ϕ $M < 500 \ {
m GeV} o \sin\phi_{CP} < 10^{-2}$

$$sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$


$$M$$
 < 500 GeV $ightarrow$ sin ϕ_{CP} < 10-2

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	3.1 x 10 ⁻²⁹	10 ⁻³³	10 ⁻²⁹
d _e (ThO)	8.7 x 10 ⁻²⁹ **	10 - ³⁸	10 ⁻²⁹
n	3.3 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** 90% CL, no eq CPV

(thanks: T. Chupp)

neutron

proton & nuclei

atoms

~ 100 x better sensitivity

Not shown: muon

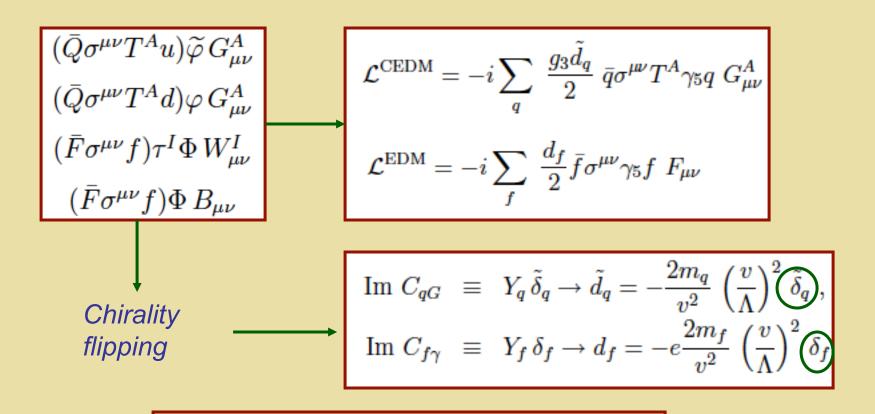
II. Interpreting EDMs

Why Multiple Systems?

Why Multiple Systems?

Multiple sources & multiple scales

EDM Interpretation & Multiple Scales Collider Searches Baryon Asymmetry Particle spectrum; also **BSM CPV Early universe CPV** scalars for baryon asym SUSY, GUTs, Extra Dim... Energy Scale **QCD Matrix Elements Nuclear & atomic MEs** Schiff moment, other P- & d_n , $g_{\pi NN}$, ... T-odd moments, e-nucleus **Expt CPV** 13


Effective Operators

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{ar{ heta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

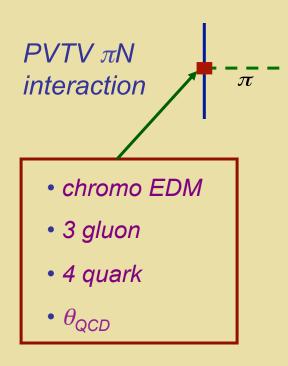
$$\mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}} = \frac{1}{\Lambda^2} \sum_{i} \alpha_i^{(n)} O_i^{(6)} + \dots$$

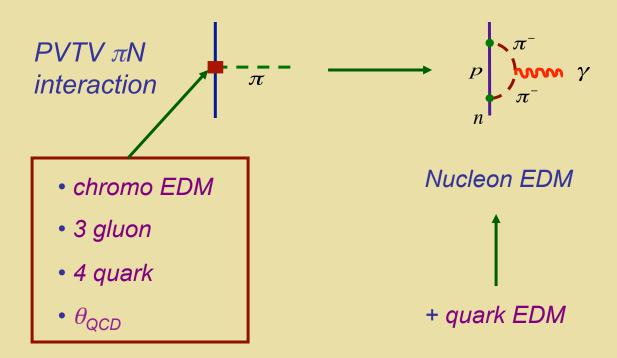
EDM Interpretation & Multiple Scales **Collider Searches Baryon Asymmetry BSM CPV** Particle spectrum; also **Early universe CPV** scalars for baryon asym SUSY, GUTs, Extra Dim... Energy Scale d= 6 Effective Operators: "CPV Sources" fermion EDM, quark chromo EDM, 3 gluon, 4 fermion **QCD Matrix Elements Nuclear & atomic MEs** Schiff moment, other P- & d_n , $g_{\pi NN}$, ... T-odd moments, e-nucleus **Expt CPV** 15

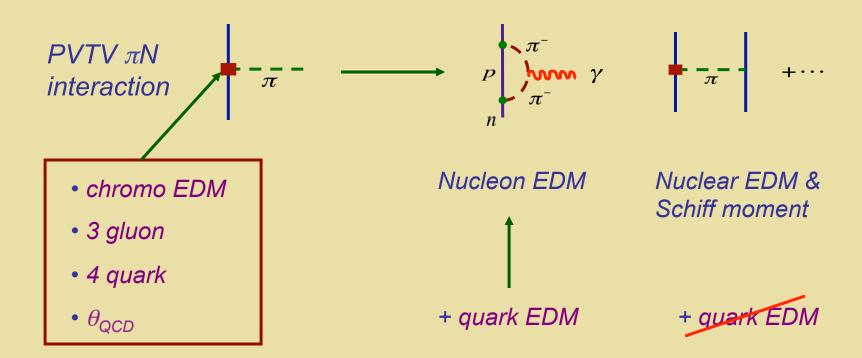
Wilson Coefficients: EDM & CEDM

 δ_f , δ_q appropriate for comparison with other d=6 Wilson coefficients

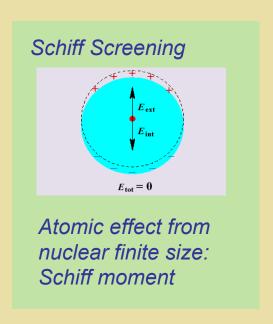
Wilson Coefficients: Summary

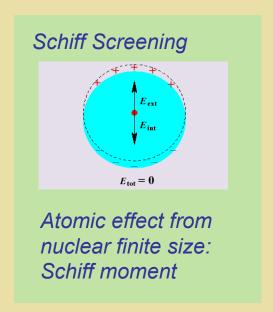

$\delta_{\!f}$	fermion EDM	(3)
$oldsymbol{\widetilde{\delta}}_q$	quark CEDM	(2)
C̃ _G	3 gluon	(1)
C _{quqd}	non-leptonic	(2)
C _{lequ, ledq}	semi-leptonic	(3)
$C_{arphi ud}$	induced 4f	(1)

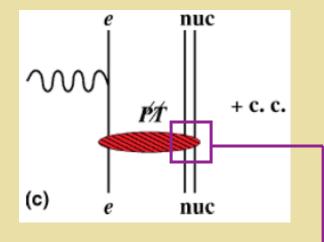

12 total +
$$\overline{\theta}$$


light flavors only (e,u,d)

III. EDMs of Strongly Interacting Systems



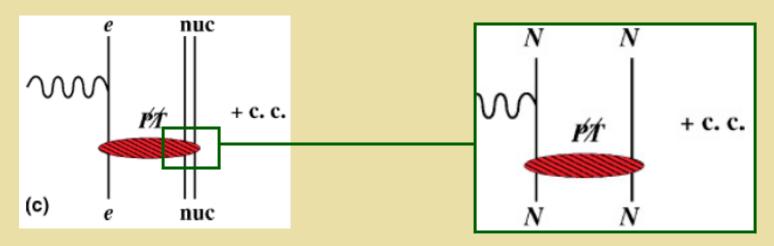



Diamagnetic Systems: Schiff Moments

Neutral atoms: nuclear EDM invisible to external probe

Diamagnetic Systems: Schiff Moments

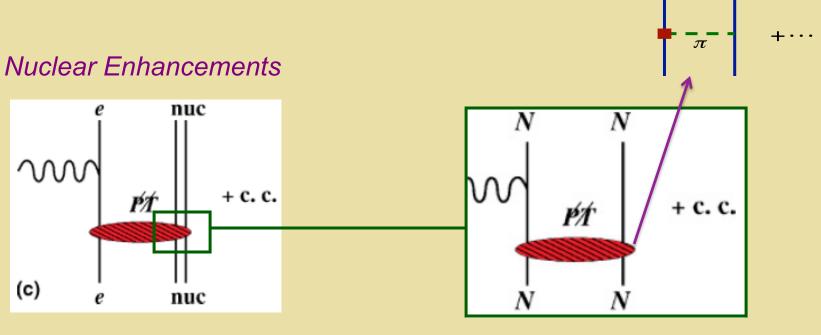
Schiff moment, MQM,...


Nuclear Schiff Moment

$$S \sim \int d^3x \ x^2 \ \vec{x} \ \rho(\vec{x})^{CPV}$$

 $(R_N/R_A)^2$ suppression

Nuclear Schiff Moment


Nuclear Enhancements

Schiff moment, MQM,...

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

Nuclear Schiff Moment

Schiff moment, MQM,...

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

IV. Hadronic Matrix Elements: Challenges

d_N "Short distance" nucleon EDM

 $\overline{g_{\pi}}^{(i)}$ TVPV π NN couplings: i=0,1,2

$$d_n = \bar{d}_n - \frac{eg_A}{4\pi^2 F_\pi} \left\{ \bar{g}_\pi^{(0)} \left(\ln \frac{m_\pi^2}{m_N^2} - \frac{\pi m_\pi}{2m_N} \right) + \frac{\bar{g}_\pi^{(1)}}{4} \left(\kappa_1 - \kappa_0 \right) \frac{m_\pi^2}{m_N^2} \ln \frac{m_\pi^2}{m_N^2} \right\} \right\}$$

Running & Matching Hadronic

$$d_N = \alpha_N \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^2 \,\sum_k \beta_N^{(k)} \,(\operatorname{Im} C_k)$$

$$\bar{g}_{\pi}^{(i)} = \lambda_{(i)} \,\bar{\theta} + \left(\frac{v}{\Lambda}\right)^2 \,\sum_k \gamma_{(i)}^{(k)} \,(\operatorname{Im} C_k)$$

$$\left(\frac{v}{\Lambda}\right)^2 \left[\beta_N^{qG} \left(\operatorname{Im} C_{qG}\right) + \beta_N^{q\gamma} \left(\operatorname{Im} C_{q\gamma}\right)\right] = e \,\tilde{\rho}_N^q \,\tilde{d}_q + \rho_N^q \,d_q = \left(\frac{v}{\Lambda}\right)^2 \left[e \,\tilde{\zeta}_N^q \,\tilde{\delta}_q + e \,\zeta_N^q \,\delta_q\right]$$

$$\left(\frac{v}{\Lambda}\right)^2 \left[\gamma_{(i)}^{qG} \left(\operatorname{Im} C_{qG}\right) + \gamma_{(i)}^{q\gamma} \left(\operatorname{Im} C_{q\gamma}\right)\right] = \tilde{\omega}_{(i)}^q \,\tilde{d}_q + \omega_{(i)}^q \,d_q = \left(\frac{v}{\Lambda}\right)^2 \left[\tilde{\eta}_{(i)}^q \,\tilde{\delta}_q + \eta_{(i)}^q \,\delta_q\right]$$

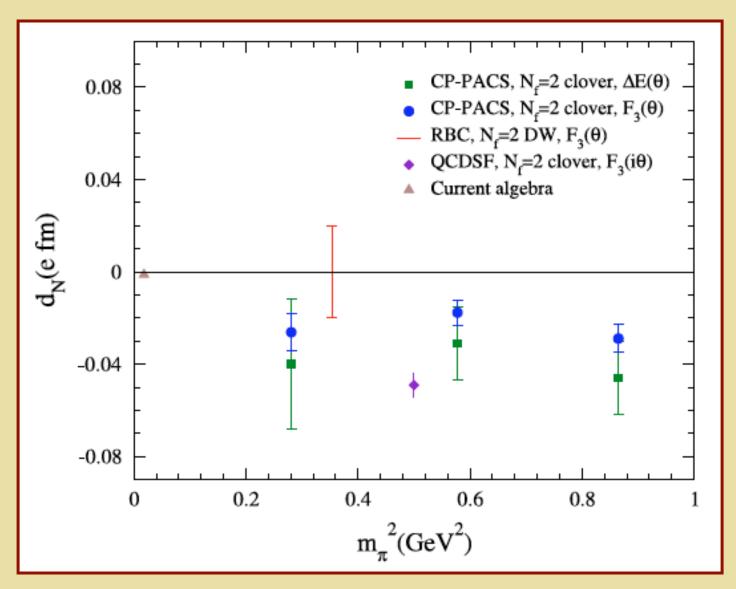
How well can we compute the β , ρ , ζ , ... ?

Hadronic Matrix Elements: Approaches

- Chiral symmetry & NDA
- Lattice
- QCD Sum Rules
- Dyson Schwinger Equations
- Quark Models

•

Param	Coeff	Best value ^a	Range
$\bar{ heta}$	$lpha_n$ $lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)
Im C _{qG}	$eta_n^{uG} eta_n^{dG}$	4×10^{-4} 8×10^{-4}	$(1-10) \times 10^{-4}$ $(2-18) \times 10^{-4}$
$ ilde{d}_q$	$e ilde{ ho}^u_n \ e ilde{ ho}^d_n$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)
$ ilde{\delta}_q$	$e\tilde{\zeta}_n^u$ $e\tilde{\zeta}_n^d$	8.2×10^{-9} 16.3×10^{-9}	$(2-20) \times 10^{-9}$ $(4-40) \times 10^{-9}$
Im C _{qy}	$eta_{n}^{u\gamma} \ eta_{n}^{d\gamma}$	0.4×10^{-3} -1.6×10^{-3}	$(0.2 - 0.6) \times 10^{-3}$ $-(0.8 - 2.4) \times 10^{-3}$
d_q	$ ho_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1
δ_q	ζ ^u ζ ^d ζ ⁿ	8.2×10^{-9} -33×10^{-9}	$(4-12) \times 10^{-9}$ - $(16-50) \times 10^{-9}$
C _G	$oldsymbol{eta}_n^{ ilde{G}}$	2×10^{-7}	$(0.2-40) \times 10^{-7}$
$\operatorname{Im} C_{\varphi ud}$	$oldsymbol{eta}_{n}^{arphi ud}$	3×10^{-8}	$(1-10) \times 10^{-8}$
$\operatorname{Im} C_{quqd}^{(1,8)}$	$oldsymbol{eta}_n^{quqd}$	40×10^{-7}	$(10-80) \times 10^{-7}$
$\operatorname{Im} C_{eq}^{(-)}$	$g_{\rm S}^{(0)}$	12.7	11-14.5
Im C _{eq} ⁽⁺⁾	g _S ⁽¹⁾	0.9	0.6-1.2


Param	Coeff	Best value ^a	Range
$\bar{ heta}$	$lpha_n \ lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)
Im C _{qG}	$eta_n^{uG} \ eta_n^{dG}$	4×10^{-4} 8×10^{-4}	$(1-10) \times 10^{-4}$ $(2-18) \times 10^{-4}$
$ ilde{d}_q$	$e ilde{ ho}^u_n \ e ilde{ ho}^d_n$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)
$ ilde{\delta}_q$	$e\tilde{\zeta}_n^u$ $e\tilde{\zeta}_n^d$	8.2×10^{-9} 16.3×10^{-9}	$(2-20) \times 10^{-9}$ $(4-40) \times 10^{-9}$
$\operatorname{Im} C_{q\gamma}$	$eta_n^{u\gamma} \ eta_n^{d\gamma}$	0.4×10^{-3} -1.6×10^{-3}	$(0.2 - 0.6) \times 10^{-3}$ - $(0.8 - 2.4) \times 10^{-3}$
d_q	$ ho_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1
δ_q	ζ ^u ζ ^d ζ ⁿ	8.2×10^{-9} -33×10^{-9}	$(4-12) \times 10^{-9}$ - $(16-50) \times 10^{-9}$
C _G	$oldsymbol{eta}_n^{ ilde{G}}$	2×10^{-7}	$(0.2-40) \times 10^{-7}$
$\operatorname{Im} C_{arphi ud}$	$oldsymbol{eta}_n^{arphi ud}$	3×10^{-8}	$(1-10) \times 10^{-8}$
$\operatorname{Im} C_{quqd}^{(1,8)}$	$oldsymbol{eta}_n^{quqd}$	40×10^{-7}	$(10-80) \times 10^{-7}$
$\operatorname{Im} C_{eq}^{(-)}$	$g_{S}^{(0)}$	12.7	11-14.5
Im C _{eq} ⁽⁺⁾	g _S ⁽¹⁾	0.9	0.6-1.2

Hadronic Matrix Elements: θ_{QCD}

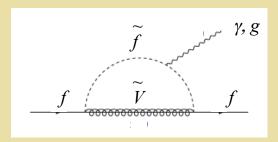
Chiral symmetry & NDA

$$\bar{g}_{\pi}^{(0)} = \frac{1 - \epsilon^2}{2\epsilon} \frac{(\Delta m_N)_q}{F_{\pi}} \bar{\theta} \longrightarrow \lambda_{(0)} = \frac{1 - \epsilon^2}{2\epsilon} \frac{(\Delta m_N)_q}{F_{\pi}}$$

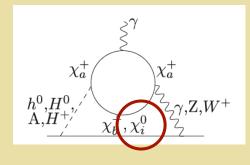
$$ar{d}_{0,1} \sim ear{ heta} \; rac{m_\pi^2}{\Lambda_\chi^3} \qquad \longrightarrow \qquad lpha_N \sim e \, rac{m_\pi^2}{\Lambda_\chi^3} \sim 0.2 \, rac{m_\pi^2}{\Lambda_\chi^2} \, e \, \mathrm{fm}$$

Param	Coeff	Best value ^a	Range
$\bar{ heta}$	$lpha_n \ lpha_p$	0.002 0.002	(0.0005-0.004) (0.0005-0.004)
Im C _{qG}	$eta_n^{uG} \ eta_n^{dG}$	4×10^{-4} 8×10^{-4}	$(1-10) \times 10^{-4}$ $(2-18) \times 10^{-4}$
$ ilde{d}_q$	$e ilde{ ho}_n^u \ e ilde{ ho}_n^d$	-0.35 -0.7	-(0.09 - 0.9) -(0.2 - 1.8)
$ ilde{\delta}_q$	$e ilde{\zeta}_n^u$ $e ilde{\zeta}_n^d$	8.2×10^{-9} 16.3×10^{-9}	$(2-20) \times 10^{-9}$ $(4-40) \times 10^{-9}$
Im C _{qy}	$eta_n^{u\gamma} eta_n^{d\gamma}$	0.4×10^{-3} -1.6×10^{-3}	$(0.2 - 0.6) \times 10^{-3}$ - $(0.8 - 2.4) \times 10^{-3}$
d_q	$ ho_n^u ho_n^d$	-0.35 1.4	(-0.17)-0.52 0.7-2.1
δ_q	ζ_n^u ζ_n^d	8.2×10^{-9} -33×10^{-9}	$(4-12) \times 10^{-9}$ - $(16-50) \times 10^{-9}$
$C_{ ilde{G}}$	$oldsymbol{eta}_n^{ ilde{G}}$	2×10^{-7}	$(0.2-40) \times 10^{-7}$
$\operatorname{Im} C_{\varphi ud}$	$oldsymbol{eta}_{ ext{n}}^{arphi ext{ud}}$	3×10^{-8}	$(1-10) \times 10^{-8}$
$\operatorname{Im} C_{quqd}^{(1,8)}$	$oldsymbol{eta}_{n}^{quqd}$	40×10^{-7}	$(10-80) \times 10^{-7}$
$\operatorname{Im} C_{eq}^{(-)}$	$g_S^{(0)}$	12.7	11-14.5
Im C _{eq}	g _S ⁽¹⁾	0.9	0.6-1.2

ρ EDM


$q\gamma q$	$-0.066 ilde{d}_{-}^{e}-0.199 ilde{d}_{+}^{e}$
BSA	$-0.120 ilde{d}_{-}^{e}+0.108 ilde{d}_{+}^{e}$
S(k)	$1.538 ilde{d}^e$
acm $(\times \mu^{\text{acm}})$	$0.775 ilde{d}_{-}^{e} + 2.396 ilde{d}_{+}^{e}$
$our\ CEDM$	$(1.35 + 0.78 \mu^{\text{acm}}) \tilde{d}_{-}^{e} - (0.09 - 2.40 \mu^{\text{acm}}) \tilde{d}_{+}^{e}$
total	$1.16 ilde{d}_{-}^{e} - 0.69 ilde{d}_{+}^{e}$
sum rules [15]	$-0.13 ilde{d}^e$

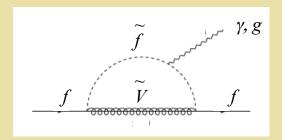
DSE: Pitschmann et al, 1209.4352,


PRC 87 (2013) 015205

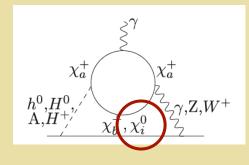
V. Implications & Outlook

EDMs & EW Baryogenesis: MSSM

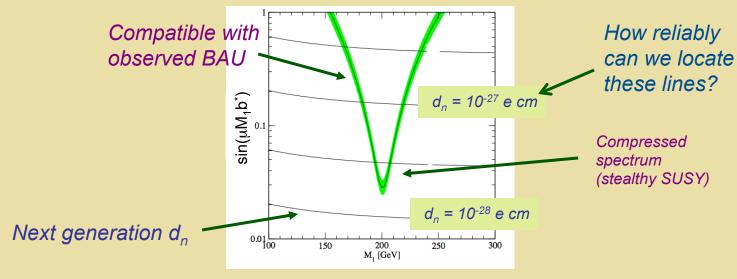
Heavy sfermions: LHC consistent & suppress 1-loop EDMs



Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases



Li, Profumo, RM '09-'10


EDMs & EW Baryogenesis: MSSM

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Li, Profumo, RM '09-'10

V. Implications & Outlook

- EDMs provide a powerful probe of CPV physics at the multi-TeV scale
- Searches in a variety of systems needed to uncover and disentangle effects associated with different "sources" (eg, d=6 operators)
- Obtaining reliable non-perturbative computations remains a key open challenge, with implications for interpretation of EDMs in terms of BSM physics & cosmology

Back Up Slides

 δ_f MSSM, RS, LRSM 1 & 2 loop

 $\widetilde{\delta}_a$ MSSM, RS, LRSM 1 & 2 loop

 $C_{\widetilde{G}}$ MSSM 2 loop

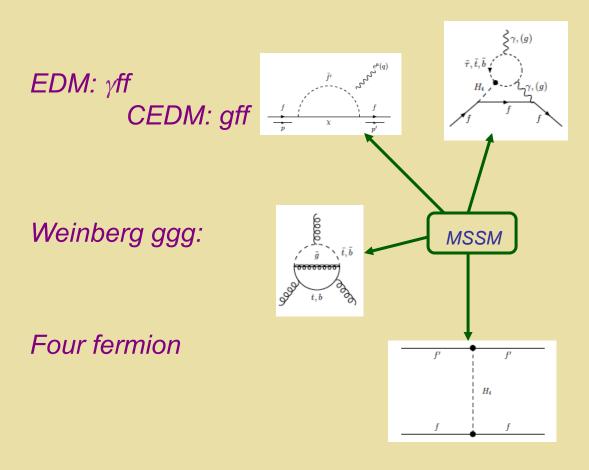
 C_{auad} (MSSM d=8)

 $C_{leau, leda}$ (MSSM d=8)

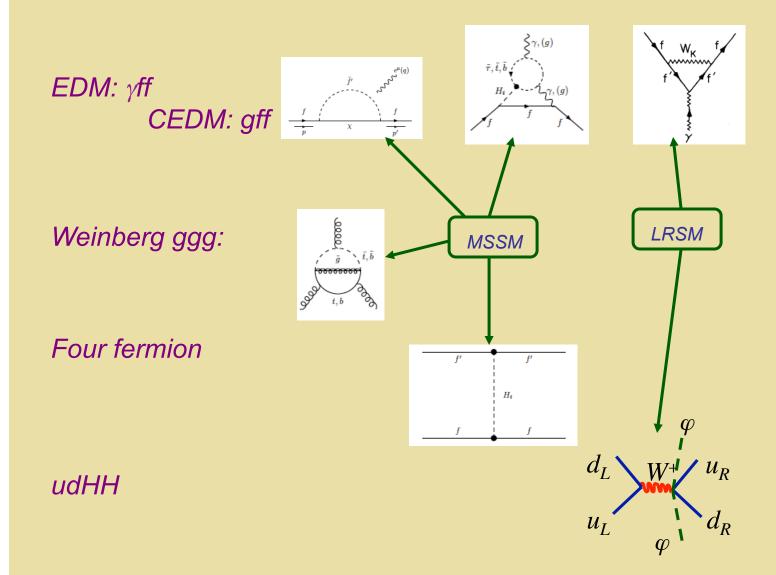
 $C_{\varphi ud}$ LRSM tree (θ_{LR})

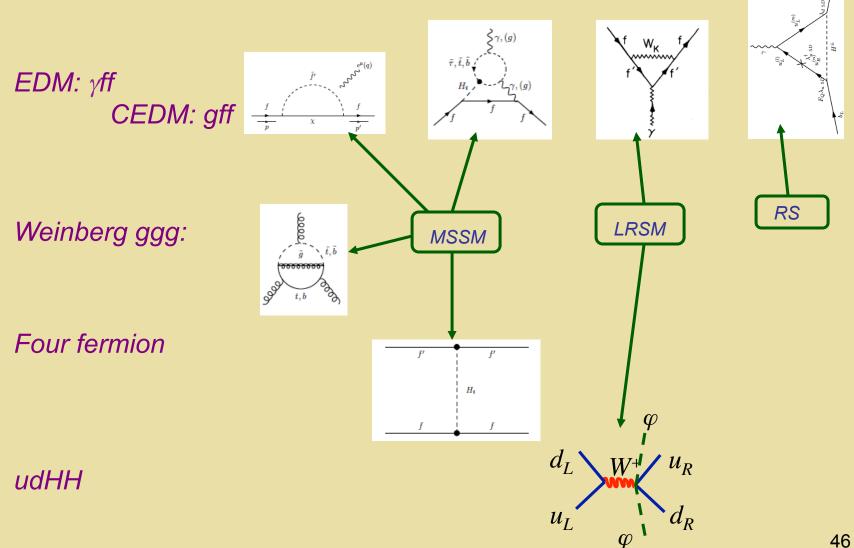
12 total + $\overline{\theta}$

light flavors only (e,u,d)

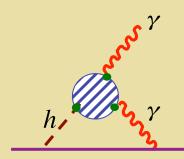

EDM: γff

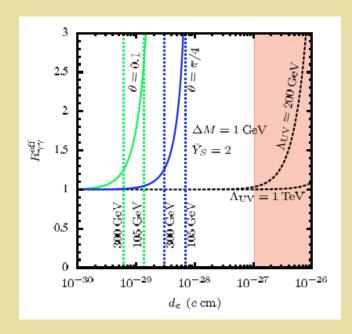
CEDM: gff

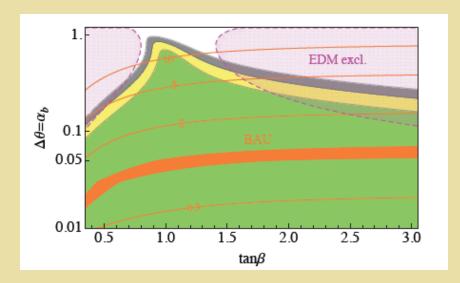

Weinberg ggg:


Four fermion

udHH


udHH




Recent Interest: EDMs & $H \rightarrow \gamma \gamma$

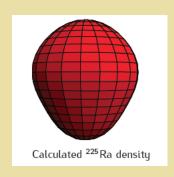
$$\frac{c_h v}{\Lambda^2} h F_{\mu\nu} F^{\mu\nu} + \frac{\tilde{c}_h v}{\tilde{\Lambda}^2} h F_{\mu\nu} \tilde{F}^{\mu\nu}$$

McKeen, Pospelov, Ritz '12 SM + singlet & vector-like leptons

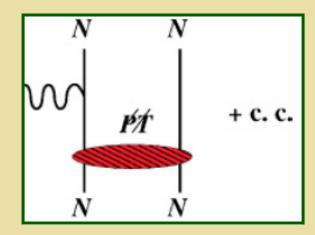
Shu, Zhang '13
2HDM & connection with BAU

Diamagnetic Systems

Nuclear Moments


Diamagnetic Systems

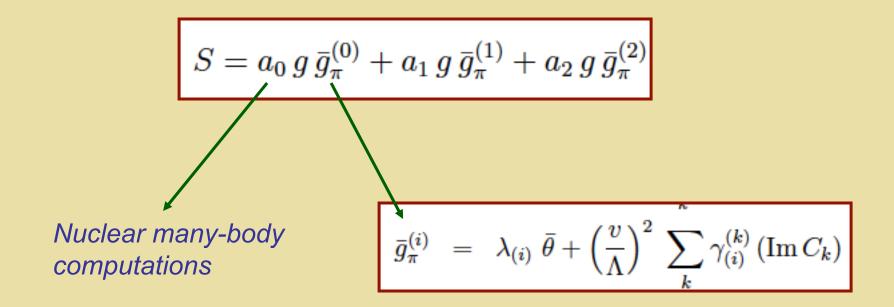
Nuclear Moments


Nuclear Schiff Moment

Nuclear Enhancements: Octupole Deformation

$$|\pm\rangle = \frac{1}{\sqrt{2}} (| \bigcirc \rangle \pm | \bigcirc \rangle)$$

Opposite parity states mixed by H^{TVPV}

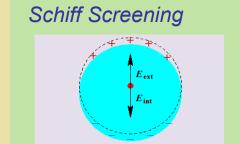

Nuclear polarization: mixing of opposite parity states by $H^{TVPV} \sim 1 / \Delta E$

"Nuclear amplifier"

EDMs of diamagnetic atoms (²²⁵Ra)

Running & Matching

Nuclear

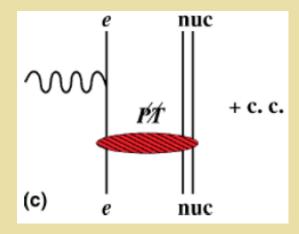


Non-perturbative hadronic computations

Nuclear Matrix Elements


Nucl.	Best value		
	<i>a</i> ₀	a_1	a_2
¹⁹⁹ Hg ¹²⁹ Xe ²²⁵ Ra	0.01 -0.008 -1.5	± 0.02 -0.006 6.0	0.02 -0.009 -4.0
Range			
a_0	a_1		a_2
0.005-0.05 -0.005-(-0.05) -1-(-6)	-0.03-(+0.09) -0.003-(-0.05) 4-24		0.01-0.06 -0.005-(-0.1) -3-(-15)

Schiff Screening & Corrections



 $E_{\text{tot}} = 0$

Atomic effect from nuclear finite size: Schiff moment

Screened EDM

Schiff moment, MQM,...

EDM, Schiff...

MQM....

$$T^{E}_{J=1} \otimes T^{E}_{J=2}$$
 ?

EDMs of diamagnetic atoms (199Hg)